# Combining laser light with synchrotron radiation

coherence

interferometer

measuring distances

measuring wavelength

speckle measurements

structure reconstruction

coherence intensity (brightness) melting of surfaces study of phase transitions (pump probe) plasma production properties of the plasma state ion and cluster production (laser ablation) electron production (electron gun for linac) higher harmonic generation

strong field effect

- coherence
- intensity (brightness)
- spectral resolution (monochromatic)

high resolution absorption spectra defined excitation of arbitrary lines

line width of continuous lasers <1MHz (4neV) example Eu

hyper fine structure (quadrupole) 192 MHz (0.8µeV)

isotope shift 2.8 GHz (12µeV)

- coherence
- intensity (brightness)
- spectral resolution (monochromatic)
- spacial resolution (collimation)

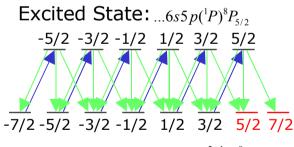
#### high spacial coherence

- → point like source
- $\rightarrow$  optimal spot area possible  $\sim \lambda^2$

- coherence
- intensity (brightness)
- spectral resolution (monochromatic)
- spacial resolution (collimation)
- temporal resolution

#### observing fast processes

ns: atomic lifetimes quality switched laser


ps: melting processes mode locked laser

fs: chemical reactions pulse compression

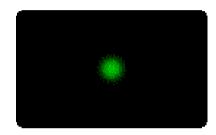
as: photon absorption high harmonic generation

- coherence
- intensity (brightness)
- spectral resolution (monochromaticity)
- spacial resolution (collimation)
- temporal resolution
- polarization

populate magnetically aligned states



Ground State:  $...6s^2(^1S)^8S_{7/2}$ 


magneto optical trap (MOT)

- coherence
- intensity (brightness)
- spectral resolution (monochromaticity)
- spacial resolution (collimation)
- temporal resolution
- polarization

How to Produce Laser Light

#### Laser Principle

Light Amplification by Stimulated Emission of Radiation



Stimulated emission amplifies the existing light wave

## What is light really?

A stream of particles?

A wave?

Something else?

#### Maxwell's equations

Gauß' Law

$$\nabla \cdot \vec{D} = \rho$$

Faraday's law

$$\nabla \times \vec{E} = -\frac{\delta \vec{B}}{\delta t}$$

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P}$$

No magnetic monopoles

$$\nabla \cdot \vec{B} = 0$$

Ampère's Law

$$\nabla \times \vec{H} = \vec{J} + \frac{\delta \vec{D}}{\delta t}$$

$$\vec{B} = \mu_0 (\vec{H} + \vec{M})$$

#### Wave equations

$$\nabla^2 \vec{E} = \epsilon \mu \frac{\delta^2 \vec{E}}{\delta t^2} \qquad \nabla^2 \vec{H} = \epsilon \mu \frac{\delta^2 \vec{H}}{\delta t^2}$$

Free Wave:

$$\vec{E} = \sum_{i} \vec{A}_{i} e^{i(\omega_{i}t + \vec{k}_{i} \cdot \vec{r})} + c.c.$$

Speed of light:

$$v = \frac{\omega_i}{k_i} = \frac{1}{\sqrt{\epsilon \, \mu}}$$

Transversal:

$$\vec{E} \cdot \vec{k} = 0$$

## What is light really?

A stream of particles?

A wave?

Something else?


#### Semiclassical approximation

In most cases, the interaction of light with matter can be modeled by treating the light as a classical wave and the atoms quantummechanically

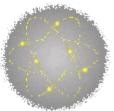
Light: The number of photons per mode is usually high

Matter: At room temperature most atoms are in the lowest states

#### **Transition probabilities**



Absorption  $W_{12}$ 


Stimulated emission  $W_{21}$ 

Spontaneous emission A

#### Calculating the transitions

Green light wavelength 5000Å





#### **Approximations**

- Wavelength much greater than atom (Dipole approximation)
- Interaction over many periods (time average)
- Weak perturbation (first order perturbation theory)

#### **Atomic wave functions**

Two energy eigenstates of an atomic system:

$$\Psi_1(\vec{r},t) = u_1(\vec{r}) \exp\left[-i(E_1/\hbar)t\right]$$

$$\Psi_2(\vec{r},t) = u_2(\vec{r}) \exp\left[-i(E_2/\hbar)t\right]$$

Superposition of eigenstates is a solution of the time dependent Schrödinger-equation:

$$\Psi = a_1 \Psi_1 + a_2 \Psi_2$$

with 
$$|a_1|^2 + |a_2|^2 = 1$$

#### **Perturbation theory**

Time independent atomic Hamiltonian:  $H_0$ 

Time dependent perturbation:

$$H'(t) = \vec{\mu} \cdot \vec{E} = e \vec{r} \cdot \vec{E}_0 \sin \omega t$$

Ansatz:

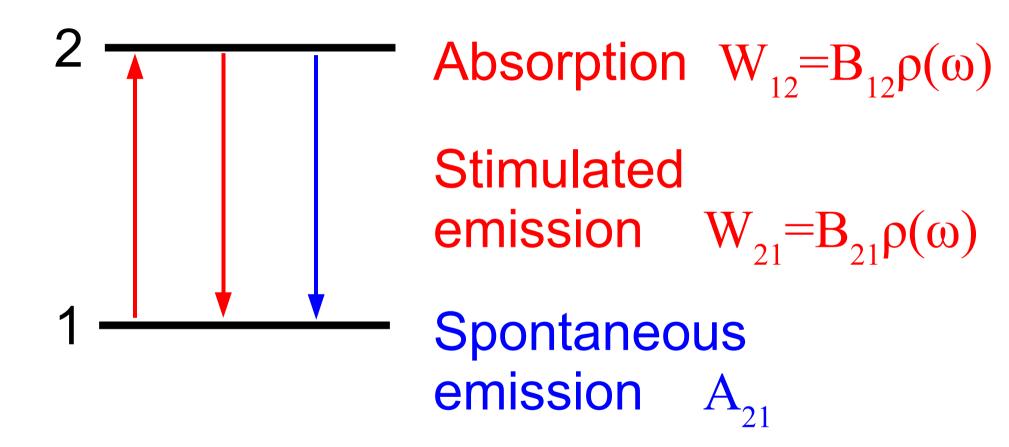
$$\Psi = a_1(t) \Psi_1 + a_2(t) \Psi_2$$

Gives in first order:

$$\frac{d}{dt}a_2 = (1/i\hbar)H_{12} \exp(i\omega_0 t)$$

with: 
$$H_{12}(t) = \int u_1^* H' u_2$$
 and  $\omega_0 = (E_2 - E_1)/\hbar$ 

#### **Absorption probability**


Integration over a long time gives the transition probability:

$$W_{12} = \frac{|a_2(t)|^2}{t} = \frac{\pi^2}{3h^2} E_0^2 |\mu_{21}|^2 \delta(\omega - \omega_0)$$

with:  $\vec{\mu}_{12} = \int u_2^* e \vec{r} u_1 dV$ 

W<sub>12</sub> depends on light intensity and atomic properties

#### **Einstein Parameters**



 $\rho(\omega)$ : Spectral energy density

## Spontaneous Emission $A_{21}$

Spontaneous emission cannot be calculated in the semiclassical approximation.



#### Einstein's argumentation

Thermal equilibrium:

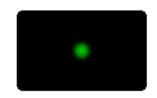
$$A_{21}N_2 + B_{21}\rho(\nu)N_2 = B_{12}N_1\rho(\nu)$$

**Boltzmann distribution:** 

$$N_i = (g_i N/Z)e^{-E/kT}$$

Blackbody radiation:

$$\rho(\nu) = \frac{8\pi\nu^2}{c^3} \frac{h\nu}{e^{h\nu/kT} - 1}$$


#### Einstein parameters

$$B_{12} = \frac{g_{12}}{g_{21}} B_{21}$$

$$A_{21} = \frac{8\pi h v^3}{c^3} B_{21}$$

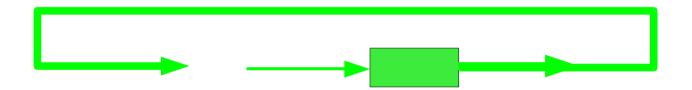
#### Laser Principle

## Light Amplification by Stimulated Emission of Radiation



- Stimulated emission amplifies the existing light wave
- often within an optical resonator
- active medium excited by:

flash lamp


discharge

laser

#### Resonator

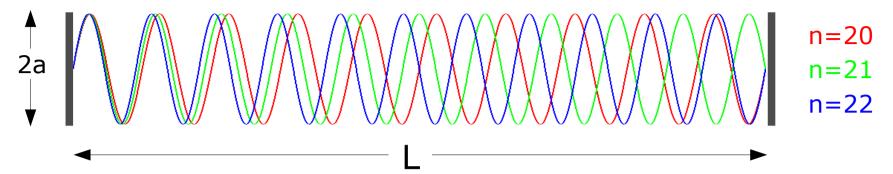
Laser with optical resonator:

feedback turns an Amplifier into an Oscillator



Laser without optical resonator:

- amplified spontaneous emission (S)ASE
  - amplification of a random mode



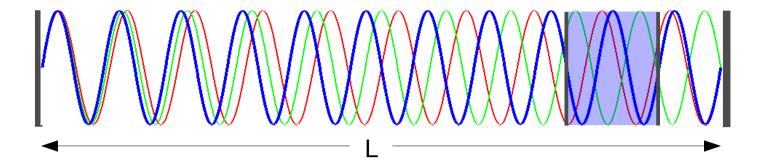

amplification of a seeding beam





## Fabry-Perot Resonator




- standing waves between flat mirrors
- integer of half a wavelength must fit into the resonator  $\lambda = \frac{2L}{n}$
- $\sim$  L=50cm,  $\lambda$ =500nm: n=20 000
- hard to align long resonators  $F = \frac{a}{\lambda L}$
- high diffraction losses for small Fresnel-number

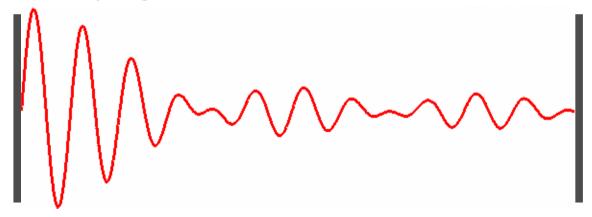
#### Using the Modes

#### What do we need?

- spectral resolution
- coherence
  - → Select a single mode
- high intensity
- short pulses
  - → Couple the modes to a short pulse

#### Mode Selection




mode separation (free spectral range):

- 300 Mhz for ½ m cavity
- 100 GHz for the thin etalon in the Ti:Sa  $\sim$ 1nm at  $\lambda$ =600nm

## Mode Coupling

producing pulse trains by fixing the phases of the modes

coupling 6 waves n=20-25



coupling 101 waves n=20000-20100

