Combining laser light with synchrotron radiation Part 6

Hyperfine structure

Examples of experiments combining synchrotron radiation with lasers

Optical Pumping into an Oriented Ground State

Hyperfine structure

The electron angular momentum J couples to the nuclear spin I to a total angular momentum F

Laser radiation easily resolves the hyperfine splitting

Not the L,m_L but the F, m_F eigenstates are pumped: F,m_F $|6,6\rangle = \left|m_J = \frac{7}{2}, m_I = \frac{5}{2}\right\rangle$ $|6,5\rangle = \frac{1}{2}\sqrt{\frac{5}{3}} \left|m_J = \frac{7}{2}, m_I = \frac{3}{2}\right\rangle + \frac{1}{2}\sqrt{\frac{7}{3}} \left|m_J = \frac{5}{2}, m_I = \frac{5}{2}\right\rangle$ $|5,5\rangle = \frac{1}{2}\sqrt{\frac{7}{3}} \left|m_J = \frac{7}{2}, m_I = \frac{3}{2}\right\rangle - \frac{1}{2}\sqrt{\frac{5}{3}} \left|m_J = \frac{5}{2}, m_I = \frac{5}{2}\right\rangle$

Laser pumping of all Hyperfine States

Lorentzian linewidths of the atoms allow for pumping of all states

Potassium hyperfine structure

Isotope	Mass	Abundance	Spin	Mag Moment
²³ Na	22.989767	100%	3/2	2.21752

Isotope	Mass	Abundance	Spin	Mag Moment
³⁹ K	38.963707	93.2581%	3/2	+0.39146
40 _K	39.963999	0.012%	4	-1.298
41 _K	40.961825	6.7302%	3/2	+0.21487

Isotope	Mass	Abundance	Spin	Mag Moment
⁸⁵ Rb	84.911794	72.17%	5/2	+1.35302
⁸⁷ Rb	86.909187	27.83%	3/2	+2.7512

Isotope	Mass	Abundance	Spin	Mag Moment
¹³³ Cs	132.905429	100%	7/2	+2.579

Orientation in solid systems: Ferromagnetism

In the ferromagnets Fe, Co, and Ni the magnetic moments of the atoms are oriented.

Can be probed with X-ray Magnetic Circular Dichroism (XMCD)

X-ray absorption spectroscopy

Staty 30%, EXC = 01/13/65 14:46:46

Excitation of a core electron into the conduction band

Intensity proportional to the number of d-Holes in the conduction band

XMCD Experimental Setup

$$|_{rhp} - |_{Lhp} \propto \langle m_{L} \rangle$$

Spin magnetic moment

The weighted difference of the hyperfine signals gives the spin magnetic moment.

Right handed polarized x-rays

Spin parallel to orbit Spin anti-parallel to orbit

XMCD-Overview

Linear Dichroism in Photoemission

A magnetic field would disturb the electron emission!

Lasers can be used for orienting the atoms

Linear Magnetic Dichroism in the Angular Distribution (LMDAD)

Setup in Hamburg

Symmetry Considerations

Circular light orients the atoms

Photoemission by linearly polarized synchrotron radiation

Linear polarized light can be split into two circular components.

 \rightarrow In absorption of total yield the CMD cancels out.

An effect is only seen in the angular distribution:

Angular Distribution of Photoelectrons

Modification by Linear Magnetic Dichroism

LMDAD in the Eu 4d photoemission

Compared to solid state gadolinium magnetic dichroism

Dichroism Patterns

Cr 3p Dichroism Patterns

M. Gisselbrecht, M. Marquette, M. Meyer

Laser Tailored Nickel like Copper

A. Verweyen et al. Phys. Rev. A 60, R737 (1999)

Changings in the PE-Spectrum

